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details
1. A few teams have made good progress (one finished) on the 

hashtable and top 10.  No one has started the hashblob and 
hashfile.

2. Reading:

a. My paper on dynamic ranking.

b. Brian Fung, "Here's what we know about Google's mysterious 
search engine", The Washington Post, August 28, 2018.

c. Look at (no need to read in any detail) Google's Page Quality 
Rating Guidelines.

d. Marc Najork and Allan Heydon, “Mercator”, September 26, 
2001.
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tcsh-31% make verbose
g++ -DVerbose Top10.cpp Common.cpp TopN.cpp -o Top10
g++ -DVerbose HashTable.cpp Common.cpp -o HashTable
g++ -DVerbose HashBlob.cpp Common.cpp -o HashBlob
g++ -DVerbose HashFile.cpp Common.cpp -o HashFile
tcsh-32% wc BigJunkHtml.txt

62001  215994 2209965 BigJunkHtml.txt
tcsh-33%

In Homework 6, you will build a conventional hash table.  If you build it with 
-DVerbose, you get timing information. I also give you some sample input.
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tcsh-33% ./HashTable BigJunkHtml.txt
Number of tokens = 215994
Total characters = 1782086
Average token length = 8.25063 characters

Building HashTable
Elapsed time = 14759200 ticks

Optimizing HashTable
Elapsed time = 591300 ticks

Enter search words:
hello world how are you
88   hello
43   world
91   how
650   are
675   you
Elapsed time = 7696912200 ticks

tcsh-34%

In Homework 6, you will build a conventional hash table.  If you build it with 
-DVerbose, you get timing information. I also give you some sample input.
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tcsh-34% ./Top10 BigJunkHtml.txt
Number of tokens = 215994
Total characters = 1782086
Average token length = 8.25063 characters

11931   <li><a
6605   the
3314   <a
3144   to
3088   a
2223   and
2059   of
1930   C
1837   is
1768   </td>
tcsh-36%

Here’s the top 10.
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tcsh-35% ./HashBlob BigJunkHtml.txt
Number of tokens = 215994
Total characters = 1782086
Average token length = 8.25063 characters

Building HashTable
Elapsed time = 14677300 ticks

Optimizing HashTable
Elapsed time = 575700 ticks

Building HashBlob
Elapsed time = 2503900 ticks

HashBlob size = 942840 bytes

Enter search words:
hello world how are you
88   hello
43   world
91   how
650   are
675   you
Elapsed time = 6315604700 ticks

In HW7, you will build a HashBlob in memory and then search it.
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tcsh-36% ./HashBlob BigJunkHtml.txt Blob.bin < /dev/null
Number of tokens = 215994
Total characters = 1782086
Average token length = 8.25063 characters

Building HashTable
Elapsed time = 14835000 ticks

Optimizing HashTable
Elapsed time = 637600 ticks

Building HashFile = Blob.bin
Elapsed time = 18153000 ticks

HashBlob size = 942840 bytes
Elapsed time = 24100 ticks

tcsh-37%

You will also build a HashBlob in as a mapped file.
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tcsh-37% ./HashFile Blob.bin
Loading HashBlob from Blob.bin
Elapsed time = 105200 ticks

HashBlob size = 942840 bytes

Enter search words:
hello world how are you
88   hello
43   world
91   how
650   are
675   you
Elapsed time = 72123829500 ticks

tcsh-38%

You will then search the HashBlob in as a mapped file. (The elapsed time reflects 
that I typed the input search words!)
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Ranking

Objective is to order pages the same way a human would 
do using software.

Do a calculation based on what's known about:

1. All the documents and words in the index.
2. That page.
3. Match between the query and the page.



1. The rank value should obey the desired ordering 
relationship, that a better page will get a better 
score.

2. Since search engines typically broadcast a query to a 
large number of machines with differing fractions of 
the web and then combine the results, the 
calculation should be consistent even though the 
samples might be a little different.

3. Beyond ordering, the value is otherwise 
meaningless:  If page A's rank is twice that of page B, 
it does not mean that A is twice as good as B.

Ranking



Only two ways to get better at ranking:

1. Have more or better information.
2. Make better use of it.



Static vs. dynamic rank

Static Quality of the page independent of the query, 
e.g., PageRank, length of the URL, title or page, 
domain (.gov or .edu vs. .biz), whether it contains 
images, pornographic content, etc.

Dynamic Quality of a page as possible result for a specific 
query considering both static rank and the quality 
of the match between the query and the page.



Static rank

Some pages are just better than others before you know 
anything about the query.



Static rank

Some domains are better than others, e.g., .gov or .edu over .biz.
Short URLs are better.
Short titles are probably better.
Some pages may be obvious spam.
Some pages may have lots of other pages pointing to them.



PageRank

A detour into the world’s 
most famous link-analysis 
algorithm.

The basic idea:  The more 
and better links to a 
page, the more likely it 
should rank higher.

Image source:  https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/PageRanks-Example.svg/1270px-PageRanks-Example.svg.png19

https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/PageRanks-Example.svg/1270px-PageRanks-Example.svg.png


PageRank random surfer

The model was that people surfed the web, somewhat randomly 
either clicking on one of the links on the page or going 
somewhere else.

If an important page pointed to yours, some of that importance 
should bleed onto yours.
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Basic PR algorithm
1. PR output is a vector of probabilities that a person randomly clicking 

links will arrive at a particular page.

2. Initially all probabilities usually assumed equal (or maybe not!)

3. Links from a page to itself are ignored.

4. Multiple links from one page to another are treated as a single link.

5. The PR transferred from one page to another is its PR divided by number 
of pages it links to.

6. At each iteration, the new PR of a given page is calculated as the sum of 
the PRs transferred to it.

7. Repeat until it settles.
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A B

C D

𝑃𝑃𝑃𝑃 𝐴𝐴 = 𝑃𝑃𝑃𝑃(𝐵𝐵)
3

+ 𝑃𝑃𝑃𝑃(𝐶𝐶)
3

+ 𝑃𝑃𝑃𝑃(𝐷𝐷)
3

𝑃𝑃𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃(𝐴𝐴)
3

+ 𝑃𝑃𝑃𝑃(𝐶𝐶)
3

+ 𝑃𝑃𝑃𝑃(𝐷𝐷)
3

𝑃𝑃𝑃𝑃 𝐶𝐶 = 𝑃𝑃𝑃𝑃(𝐴𝐴)
3

+ 𝑃𝑃𝑃𝑃(𝐵𝐵)
3

+ 𝑃𝑃𝑃𝑃(𝐷𝐷)
3

𝑃𝑃𝑃𝑃 𝐷𝐷 = 𝑃𝑃𝑃𝑃(𝐴𝐴)
3

+ 𝑃𝑃𝑃𝑃(𝐵𝐵)
3

+ 𝑃𝑃𝑃𝑃(𝐶𝐶)
3
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A B

C D

𝑃𝑃𝑃𝑃 𝐴𝐴 = 𝑃𝑃𝑃𝑃(𝐵𝐵)
1

+ 𝑃𝑃𝑃𝑃(𝐶𝐶)
3

𝑃𝑃𝑃𝑃 𝐵𝐵 = 𝑃𝑃𝑃𝑃(𝐶𝐶)
3

+ 𝑃𝑃𝑃𝑃(𝐷𝐷)
1

𝑃𝑃𝑃𝑃 𝐶𝐶 = 0

𝑃𝑃𝑃𝑃 𝐷𝐷 = 𝑃𝑃𝑃𝑃(𝐶𝐶)
1
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A B

C D

𝑃𝑃𝑃𝑃 𝑢𝑢 = �
𝑢𝑢∈𝐵𝐵𝑢𝑢

𝑃𝑃𝑃𝑃( 𝑣𝑣 )
𝐿𝐿( 𝑣𝑣 )

Where
𝑢𝑢 is a page,
𝑃𝑃𝑃𝑃 𝑢𝑢 is is the PageRank of page 𝑢𝑢,
𝐵𝐵𝑢𝑢 is the set of all pages that link to 𝑢𝑢,
𝐿𝐿( 𝑣𝑣 ) is the number pages linked from 𝑣𝑣.
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Damping factor

But in this basic version, PR sinks could happen, where at every
iteration, a site just got more and rank.

They solved this by adding the notion that their imaginary surfer 
randomly clicking links will eventually stop clicking and simply 
start over at some other random page. This became a damping 
factor in PageRank.
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A B

C D

𝑃𝑃𝑃𝑃 𝑢𝑢 =
1 − 𝑑𝑑
𝑁𝑁

+ 𝑑𝑑 �
𝑣𝑣 ∈ 𝐵𝐵𝑢𝑢

𝑃𝑃𝑃𝑃( 𝑣𝑣 )
𝐿𝐿( 𝑣𝑣 )

Where
𝑢𝑢 is a page,
𝑃𝑃𝑃𝑃 𝑢𝑢 is is the PageRank of page 𝑢𝑢,
𝐵𝐵𝑢𝑢 is the set of all pages that link to 𝑢𝑢,
𝐿𝐿( 𝑣𝑣 ) is the number pages linked from 𝑣𝑣,
𝑑𝑑 is the damping factor, typically ~0.85.
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PageRank

It obviously did work and Google got better results.

It also gave halo of special legitimacy to their results, that they 
were scientific and unbiased.
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At Microsoft

We gamely expected our version of PageRank to represent about 
half the overall rank value, largely based on the hype around it.

Turned out it was very expensive to calculate and represented 
only a small part of the final rank score.

Mark Najork of Mercator fame argued for lumping whole 
domains together in something called DomainRank.  But it 
hadn’t yet worked when I left.
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Ranking process

1. Compile the query.

2. Search the index for matching pages.

3. Return a list of the n best with scores indicating estimated 
quality.

4. May also return debug information to allow the scoring 
calculation to be examined.



Question

1. How should you find the n best?
2. Should you get the entire list and then sort?



Question

1. How should you find the n best?
2. Should you get the entire list and then sort?

No, you should probably insertion sort into array 
of n elements.



Simple search engine query language

<Constraint>        ::= <BaseConstraint> { <OrOp> <BaseConstraint> }

<OrOp>              ::= 'OR' | '|' | '||'

<BaseConstraint>    ::= <SimpleConstaint> { [ <AndOp> ] <SimpleConstraint> }

<AndOp>             ::= 'AND' | '&' | '&&'

<SimpleConstraint>  ::= <Phrase> | <NestedConstraint> |
<UnaryOp> <SimpleConstraint> |
<SearchWord>

<UnaryOp>           ::= '+' | '-' | 'NOT'

<Phrase>            ::= '"' { <SearchWord> } '"'

<NestedConstraint>  ::= '(' <Constraint> ')'



The query language and the ISRs can be recursive

"apollo moon landing" | ( apple banana )

OR

Phrase AND

"apollo" "moon" "landing" "apple" "banana"

The parse tree



The query language and the ISRs can be recursive

"apollo moon landing" | ( apple banana )

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure



OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

OR

Phrase AND

"apollo" "moon" "landing" "apple" "banana"

The parse tree

"apollo moon landing" | ( apple banana )

The trees are the same.



Technically, is this correct?

"apollo moon landing" | ( apple banana )

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

How many ISRs does it really take to do this?



Decorating

Add characters that get stripped out during HTML parsing 
to indicate special characteristics or types of posts, e.g.,

amazon amazon in the body text
#amazon amazon only in the URL
@amazon amazon only in the title
$amazon amazon only in the anchor text
% End-of-document token.

Might also be used for stemming:

swim* swim, swims, swimming, etc.



Decorating vs. attributes

Use decorating when you’d like to use it for searching, to shrink 
the size of a post or because you’d like to separate the scoring 
for hits in the title vs. the body for example.

Use attributes when the ranker will want the information about 
each post and it could be different every time.
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AND ISR

apple ISR banana ISR

@apple ISR banana ISR

#apple ISR

@banana ISR

/apple ISR #banana ISR

AND ISR

apple ISR

/banana ISR

OR ISR OR ISR

The AND of apple and banana might actually 
take 12 ISRs if the terms are decorated, e.g.,
@ = anchor, # = title, / = url.

EndDoc ISR



"apollo moon landing" phrase actually 
requires 4 ISRs for each stream (anchor, 
title, URL and body) + an OR ISR = 17 ISRs.

Phrase ISR

apollo ISR moon ISR landing ISR

Assume decorations:  @ = anchor, # = title, / = url

Phrase ISR

#apollo ISR #moon ISR #landing ISR

Phrase ISR

@apollo ISR @moon ISR @landing ISR

Phrase ISR

/apollo ISR /moon ISR /landing ISR

Phrase ISR

apollo ISR moon ISR landing ISR

OR ISR



Coming back to the question, is this correct?

"apollo moon landing" | ( apple banana )

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

If the terms are decorated, it could take 30 ISRs.

17 ISRs 12 ISRs

1 ISR



Matches in order of importance:

1. Anchor text.
2. URL.
3. Title.
4. Body.

Exception is Japan were URL matches are less useful due to 
mismatch between Kanji or Katakana queries and transliterated 
URLs.

URLs may need dictionary word-breaking or regex-style matching 
to be useful.  Again, beyond the scope.



Does it matter how many ISRs you use?
How much effect will this have on query search 
time?
What dominates search time?
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Basic ranking

1. Matching pages found by the constraint solver but that only 
finds the page and the static information about the page 
from the enddoc.

2. Queries are flattened.  (Very hard to estimate the probability 
of phrases or other combinations of OR’ing and AND’ing
terms.)

3. ISRs are reset to the beginning of the document, then 
advanced through the page, extracting data about where the 
search words were found.

4. Three strategies from there.



Queries are flattened

These queries all match different sets of pages:

apollo moon landing
( apollo | moon ) landing
“apollo moon landing”

But for scoring, they’re all flattened to the same 
list of search words.



Three strategies

1. Bag of words:  The more hits the better.
2. Heuristics:  Look for exact matches, matches in the right 

places, hand or machine-tuned.
3. Machine learning, typically with a neural net.



Bag of words

Count the number of matches of each of the search words, 
typically weighted by the frequency of the word within the 
corpus.
Two most famous:
1. tf-idf
2. BM25



tf-idf

Term-frequency, inverse document frequency.

Bag of words technique.  The more occurrences of a rare word, 
the better.

Combined:

1. Term weighting based on frequency invented by to Hans 
Peter Luhn in 1957.

2. Statistical interpretation invented by Karen Spärck Jones in 
1972.



Term frequency

𝑇𝑇𝑇𝑇 𝑡𝑡 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Inverse document frequency

𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡 =
log𝑒𝑒( 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 )
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡

Tf-idf is the product.  The more the better.

𝑇𝑇𝑇𝑇 − 𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝑇𝑇𝑇𝑇 𝑡𝑡 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼( 𝑡𝑡 )



Okapi BM25
Okapi Best Matching function, a similar bag of words technique.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐷𝐷,𝑄𝑄 = �
𝑖𝑖=1

𝑛𝑛

𝐼𝐼𝐼𝐼𝐼𝐼 𝑞𝑞 �
𝑓𝑓 𝑞𝑞𝑖𝑖 ,𝐷𝐷 � ( 𝑘𝑘1 + 1 )

𝑓𝑓 𝑞𝑞𝑖𝑖,𝐷𝐷 + 𝑘𝑘1 � ( 1 − 𝑏𝑏 + 𝑏𝑏 � 𝐷𝐷
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 )

𝑓𝑓 𝑞𝑞𝑖𝑖,𝐷𝐷 is 𝑞𝑞𝑖𝑖’s term frequency in Document D.
𝐷𝐷 is the length of the document in words.
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the average document length.

𝑘𝑘1 and 𝑏𝑏 are free parameters you get to choose.
Typically 

𝑘𝑘1 ∈ 1.2, 2.0

𝑏𝑏 = 0.75



Bag of words

Problem is, bag of words techniques simply don’t work very well 
on the web because they don’t do well at distinguishing quality, 
especially, to find the best match.

They simply cannot distinguish that a page with all the search 
words in the right order, as an exact phrase, or near the top of 
the page is better than a page where the words are randomly 
scattered.



Bag of words
Here’s a sample NY Times page from Jan 25, 2021.



Bag of words
Here it is stripped of HTML and CSS but the text remains.



Bag of words
Here it is with the words in the title and body sorted.  Tf-idf can’t tell the difference.



Heuristics

1. Incrementing a flurry of low-level counters, e.g., number of 
times each word occurred, number of times an exact phrase 
matching the query was found.

2. Large number of cheap heuristics that are expected to 
provide evidence of the quality of the match.



Query processing

1. Compile the query into a structure of ISRs.

2. Pass the ISRs to the constraint solver to find matching pages.

3. For each matching page:
a. Move the ISRs back to the beginning of the page and scan 

for hits.
b. Calculate a rank value and insertion sort the page into a 

list of n best.



quick
62
69
84

311
421
430
559
619
794
952

brown
83
94

170
179
216
227
400
417
422
516
795
826
828
957

fox
284
423
580
612
796
912
958

Example phrase query "quick brown fox“ and the their 3 posting lists.

Individual search words appear individually many times but there are only 
two exact phrases.  The constraint solver will stop on the first phrase match, 
then it's up to the ranker to decide what next.

quick
62
69
84

311
421
430
559
619
794
952

brown
83
94

170
179
216
227
400
417
422
516
795
826
828
957

fox
284
423
580
612
796
912
958



quick
62
69
84

311
421
430
559
619
794
952

brown
83
94

170
179
216
227
400
417
422
516
795
826
828
957

fox
284
423
580
612
796
912
958

Example phrase query "quick brown fox".

A suggested first step in ranking is to flatten the query, pulling out all the 
individual ISRs and seeking them to the beginning of the document.

quick
62
69
84

311
421
430
559
619
794
952

brown
83
94

170
179
216
227
400
417
422
516
795
826
828
957

fox
284
423
580
612
796
912
958



Example phrase query "quick brown fox".

From there, you can move the ISRs any way you like to extract data as long as 
they only go forward.

quick
62
69
84

311
421
430
559
619
794
952

brown
83
94

170
179
216
227
400
417
422
516
795
826
828
957

fox
284
423
580
612
796
912
958

Word counts:
quick 10
brown 14
fox 7

Two possible strategies:
1. Simply count the words.
2. Look for places where the words occur 

together.
3. Possible combinations of the three words 

= 10 * 14 * 7 = 980 for a very short 
document and will grow with longer 
queries.

4. Not possible to visit all combinations if all 
the ISRs only go forward.

5. May either read the lists in or process on 
the fly.



Example phrase query "quick brown fox".

quick
62
69
84

311
421
430
559
619
794
952

brown
83
94

170
179
216
227
400
417
422
516
795
826
828
957

fox
284
423
580
612
796
912
958

I'm going to show you a simpler strategy I used at Microsoft.



I was very concerned that my ranker 
would single-handedly blow us out of 
the water on perf and I wanted 
something really simple.

It was all integer math and done in a 
single pass over each page.



AND'ing streams

quick 10   27   105                  513   518  520
brown 28   50   62   70             514                              790
fox 87   106                          515   550                                      1200
#DocEnd 112                               570         1006               1704

quick fox How many possible combinations?  6
Can you reach all of them in a single pass, all ISRs only moving 
forward?  No.

Would prefer a technique that allows the ISRs to be moved only in a single pass.



Basic strategy
Choose rarest word as an anchor and advance that ISR through 
each occurrence in the document.

At each occurrence of the rarest word, advance the other ISRs to 
position them as close as possible to the desired position in the 
flattened list.

Requires only one stage of look-ahead.



1. If there is at least one occurrence of each query term, that’s a 
“span” which can be further distinguished as ordered, short, an 
exact phrase, etc.

2. Only the rarest word is guaranteed to a unique occurrence.

3. The other words may be reused.

4. Also count doubles and triples, meaning various combinations of 
just 2 or 3 of the words in the query, one of which must be the 
rarest.

5. Parameterized threshold for short vs. long spans, frequent vs. 
infrequent, etc.

6. Most features are binary and either occur or do not occur 
unambiguously.

Spans



Example phrase query "quick brown fox".
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fox
284
423
580
612
796
912
958

What I did was pick the rarest word and then arrange the other ISRs to as 
close as possible to their desired locations in the query relative to each 
occurrence of the rarest word.

Word counts:
quick 10
brown 14
fox 7

This reduces the number of combinations 
to be scored in this example from 10*14*7 
= 957 to 7 and can be done a single pass 
with a single stage of lookahead.

Call each combination a span.
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Iterate over the rarest word hits, arranging the other ISRs to as close as they 
could be to their desired locations in the query.  Here are the first 3 spans.
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For each combination, decide if it's an exact phrase or all the words in order, or close 
together, incrementing an associated counter.  Shown here, there is one exact 
phrase but none of the rest are in order or particularly close together.
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quick
62
69
84

311
421
430
559
619
794
952

brown
83
94

170
179
216
227
400
417
422
516
795
826
828
957

fox
284
423
580
612
796
912
958

This last one is close together (say, less 
than 10 words apart) and in order but it's 
not an exact phrase.



Example phrase query "quick brown fox".
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Set some thresholds and accumulate some counts, 
which can scored at the end.

Thresholds Values
Max to be short 10
Min to be frequent ?
Min to be most ?
Min to be near the top ?

Heuristic Count Weight Score
Number of short spans 1 5 5
Number of in order spans 1 2 2
Exact phrases 2 10 20
Number of spans near the top ? ? ?
All word are frequent ? ? ?
Most words are frequent ? ? ?
Some words are frequent ? ? ?

Total dynamic rank score ?
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One reason to decorate words as anchor, URL, title or 
body is so they can be separated in to separate streams 
(separate sets of ISRs) and scored separately with the 
same algorithm but different scoring parameters.

Stream Weight Score
Anchor ? ?
URL ? ?
Title ? ?
Body ? ?

Total dynamic rank score ?

Each of the streams can start at location 1 relative to 
the start of the document.  The document length is the 
length of the longest stream.

Not all streams may contain all the words.
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We do a similar heuristic calculation of the static rank, 
the quality of the page independent of the query.

Heuristic Weight Score
Short title ? ?
Nice document length ? ?
Short URL ? ?
Lots of anchor text ? ?
edu/gov/com/etc domain ? ?
PageRank if known ? ?

Total static rank score ?



Example phrase query "quick brown fox".
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Combine static and dynamic rank to get a final score.

Component Weight Score
Static rank ? ?
Dynamic rank ? ?

Total rank score ?

The result is a linear combination of features.  We're 
just adding them up.

You should be able to achieve reasonably good results 
with a reasonably small number of heuristics and 
simple hand-tuning starting from some rough guesses 
at, e.g., the relative importance of an exact phrase 
versus lots of individual hits.



The actual score is calculated as a linear combination of features, which may be 
thought of as:

R  = Σ Ci( Q ) * Ai( P, Fi ) * Si( Fi )

Where:

R  = Overall Rank
Q  = The Query and its characteristics, e.g., the number of rare vs. common words 

in the query.
P  = The Page and its characteristics, e.g., the number of words in the URL or title.
Fi  = An arbitrary feature observation, e.g., an exact phrase in the title, or a raw 

value, e.g., raw PageRank.
Si  = Scaling for feature Fi from the raw number space of the feature into a 

nominal 0.0 .. 1.0 range.
Ai  = Attribute scaling for feature Fi, possibly dependent on the characteristics of 

the page P.
Ci  = Coefficient for feature Fi, depending on the characteristics of the query Q.
Fi  = Ei( Q, P, T )



Steps to ranking

1. Decide what information to collect and how to measure it.

2. Decide how to measure the quality of the result.

3. Pick a method for scoring a page based on the inputs.

4. Tune the system by testing it on sample queries and 
adjusting parameters, collecting more information or 
changing the scoring algorithm.



Measuring quality
At Microsoft, initially, I just ran queries and eyeballed 
the results and fiddled with the parameters.
Results were surprisingly good.



Measuring quality
We were also collecting labeled pages.  We scraped queries and results 
from several engines and then paid people to rate results on a 0 to 5 
scale.

5 Definitive result.  Unlikely any other page could be a better 
result for this query, e.g., whitehouse.gov for "whitehouse".
:

0 Completely deleterious result, e.g., porno, spam, phishing.

This is similar to what Google is doing with their Page Quality Rating 
Guidelines, creating specificity in the ratings.

Altogether, I think we had about 50K queries and about 150K labeled 
results.

https://static.googleusercontent.com/media/www.google.com/en/insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf


Measuring quality
Next came a tool allowing us to do side-by-side comparison of 
results with current best parameters in a frame on the left and 
with a set you could tweak on the right.

If the pages had been labeled, it reported the quality and 
attempted to score the resulting set.

We ran a competition to see who could come up with the best 
settings.



Measuring quality
Finally, we added a tuner that could adjust the parameters 
mechanically by gradient descent:  Tweak an individual parameter 
rerun all the searches and measure whether the results got better 
(more highly ranked pages for each query.)

But we had lots of problems in the methodology of what to do with 
unlabeled pages.

Initially they were assumed to be “average”.   Later, a “promising 
proximity” heuristic was added to the tuner bump the estimate for 
unlabed pages if the search words were found close together.

The effect was to tune my complex ranker ended up being tuned to 
behave like the tuner’s naïve ranker.

Better strategy would have been to only tune based on labeled results, 
discarding any unlabeled results.



Generating labeled results
You can’t afford to pay people to label results  but you might 
assume that Google is pretty good, so you might simply try to get 
pages in the same order as Google.

Your ranker won’t be as good as Google’s, so it might not be able 
to discern the difference between the top results on the first 
page, but perhaps it could distinguish between the first result on 
the first page and the first result on the fifth page.



How to do better

To do better than heuristics, you will probably 
need a neural network.

81



Example phrase query "quick brown fox".
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A machine learning strategy would be to simply collect all the lists and pass 
everything to a neural network, which must be trained.  Beyond the scope here.

Image source:  https://en.wikipedia.org/wiki/Artificial_neural_network
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